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C O M P L E T E  S Y S T E M S  OF C O N S E R V A T I O N  L A W S  

F O R  T W O - L A Y E R  S H A L L O W  W A T E R  M O D E L S  

V. V. Os tapenko  UDC 532.59 

A well-posedness criterion for a complete system of conservation laws is proposed that assumes 
maximum compatibility of the convexity domain of the closing conservation law with the domain 
of hyperbolicity of the model used. This criterion is used to obtain well-posed complete systems 
of conservation laws for the models of two-layer shallow water with a free-surface (model I) and 
with a rigid lid (model II). 

Ovsyannikov [i] derived and studied three differential models of two-layer shallow water: model I, in 
which the upper boundary of the fluid is a free-surface, model II, in which it is a rigid lid, and model III, 
which is the general limiting case of the first two models. For these models, the hyperbolicity domains in 
which discontinuous solutions are possible were determined. This led to the problem of formulation of these 
models as complete systems of conservation laws [2-4]. 

In the present paper, we propose a solution of this problem using a well-posedness criterion for a 
complete system of conservation laws. This criterion assumes maximum compatibility of the convexity domain 
of the closing conservation law (which is the law of conservation of total energy) with the hyperbolicity domain 
of the model considered. For model I, the well-posed complete system contains, as the basis laws, the laws of 
conservation of mass in the layers, total momentum, and velocity jump at the interface between the layers. 
For model II, the basis of well-posed system (corresponding to flows for which the ratio of the depths of the 
layers is not too small) is a complete system in which mass, total momentum, and local momentum jump 
at the interface between the layers are conserved at discontinuities. At the same time, when the ratio of the 
depth of the upper  layer to that of the lower layer is sufficiently small, the more well-posed system for model 
II is a complete system in which the law of conservation of local momentum in the lower layer is satisfied 
at discontinuities (along with the laws of conservation of mass and total momentum).  Conversely, when the 
ratio of the depth of the lower layer to that of the upper layer is sufficiently small, the more well-posed system 
for model II is a complete system for which the law of conservation of local momentum in the upper layer is 
satisfied at discontinuities (along with laws of conservation of mass and total momentum).  

1. C o m p l e t e  S y s t e m  of  C o n s e r v a t i o n  Laws in t h e  G e n e r a l  Case .  We consider the following 
quasilinear system of conservation laws [2-4]: 

u,  + f(u)  = o, (1.1) 
where u(t, x) = (u l , . . .  ,urn) is the desired piecewise-continuous vector function and .f(u) = ( f l , . . . ,  fro)is 
a specified smooth vector function. System (1.1) is called a complete system if there exists a scalar function 
U(u) such that: 

(a) its gradient v(u) = Uu is an integrating factor for system (1.1), i.e., Uu" f u  = Fu and, as a result. 
system (1.1) admits the additional closing conservation law 

u(u) ,  + F(u)  = o; (l:>) 
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(b) the map u --+ v ( u )  is locally one-to-one. 
Introducing the generating funct ions  (or potentials) 0 = v �9 u - U and q2 = v �9 f - F by a Legendre 

transformation, we write the complete  system of conservation laws (1.1) in symmetr i c  form 

whose extended nondivergent form is 

( r  + = o, (L.3) 

Art + Bv~ = 0,  ( 1 . 4 )  

where A = ~vv and B = ~vv are symmetric  matrices. In [5], it was pointed out that  a wide class of equations 
of mathematical  physics (in particular,  gas-dynamic equations) can be brought to the symmetric form (1.3), 
(1.4). The fact that  the completeness of the system (1.1) is equivalent to the possibility of writing it in the 
symmetric form (1.3) was shown in [5-7]. 

If the complete system (1.1) admits  the closing conservation law (1.2) with the convex function U(u),  
then the map u --~ v ( u )  of the basis variables u to the canonical variables v is automatically one-to-one, the 
potential r  is convex, and the  matrix A ( v )  entering in the symmetric system (1.4) is positive definite [the 
latter implies that  system (1.1) is hyperbolic]. In [7, 8], the closing conservation law (1.2) for this complete 
system (1.1) (called a convex extension [7]) was used for selection of stable discontinuous solutions. These 
solutions are defined as solutions that  in a weak sense [2] satisfy the entropy inequality 

U(,,)t  + F ( , , ) ,  .<< 0 (1..5) 

(the functions U and F are called an entropy funct ion and entropy flux). Friedrichs and Lax [7] showed that. 
for the complete system (1.1) with the convex extension (1.2), inequality (1.5) is satisfied by solutions of the 
system with linear viscosity ut  + f ( u ) ,  = # u , z  in the limit p + 0. Lax [2] proved that  if this complete system 
is strongly nonlinear, the entropy condition (1.5) is locally (i.e., for shock waves of rather small intensity) 
equivalent to the characteristic stability condition introduced in [9]. 

In many papers (see, e.g., [8, 10, 11]) it is assumed that  for complete systems of conservation laws (1.1) 
with the convex extension (1.2) the entropy condition (1.5) ensures the unique global solvability of the Cauchy 
problem in a certain class of piecewise-continuous functions. Thus, the existence of the convex extension (1.2) 
is regarded as the key requirement  for well-posed formulation of a hyperbolic system in the form of a complete 
system of conservation laws. For a particular complete system in the form (1.1), this means that  the convexity 
domain Ft c of its entropy function must  be maximum compatible with its hyperbolicity domain ~h. In this 
case, f~c C f~h since the complete  system with convex extension is hyperbolic. In particular, if we have two 
different complete systems of conservation laws (1.1) with convexity domains f~  and f~ that  are obtained 
from the same differential hyperbolic system and if 12~ C ~ ,  then the system with the convexity domain 
~ should be considered more well-posed. Below, complete systems of conservation laws for the equations of 
single-layer shallow water and two-layer shallow water are analyzed from this viewpoint. 

2. C o m p l e t e  S y s t e m s  of  C o n s e r v a t i o n  Laws  for  t h e  S ing l e -Laye r  Sha l l ow  W a t e r  E q u a t i o n s .  
Ignoring friction and assuming that  the flow domain is a channel with a rectangular cross section and horizontal 
bottom, we write differential equations of single-layer shallow water theory in the  form [4, 12] 

ht +q~ = 0, (2.1) 

+ ( .2 /2  + gh)  = 0, (2.2) 

where h is the fluid depth,  q = hv is the discharge rate, v is velocity, and 9 is the acceleration of gravity. 
Equations (2.1) and (2.2) are the laws of conservation of mass and local m o m e n t u m  for each fluid particle 
along the streamline. System (2.1), (2.2), as any other system of two scalar conservation laws, has an infinite 
number of other linearly independent  conservation laws but  only the following two of them have a physical 
meaning: the taw of conservation of total momen tum 

q, + (qv + 9h2/2)~ = 0 (2.3) 
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and the law of conservation of total energy 

et + [(v 2 + 2gh)q]z = 0, 

where 

(2.4) 

e = qv + gh 2. (2.5) 

Usually (see [4, 12]), when the differential model of shallow water (2.1)-(2.4) is formulated in the form 
of a complete  sys tem of conservation laws, the law of conservation of mass (2.1) and the law of conservation 
of total m o m e n t u m  (2.3) are used as basis conservation laws, and the law of conservation of total energy (2.4) 
is employed as the  closing conservation law (the corresponding symmetric form of system (1.3) is given in 
[4]). In this comple te  system (denoted by $1), the total energy (2.5), which in terms of the basis variables 
u = (h, q) is wr i t ten  as the function e(h, q) = q2/h + gh 2, which is convex for h > 0, plays the role of the 
entropy funct ion U(u) .  The complete  system $1 thus has the convex extension (2.4) in the entire hyperbolicity 
domain of sys tem (2.1), (2.3). 

In contras t  to the sys tem $1, the complete system consisting of the basis conservation laws (2.1), (2.2) 
and the closing conservation law (2.4) (this system is denoted by $2) has the entropy function 

e(h, v) = (v 2 + gh)h,  (2.6) 

which is convex only for subcritical flows Ivl < Therefore (according to the criterion proposed above), 
the system $1 is more  well-posed than $2 (it is interesting that ,  in spite of this, for both systems $1 and $2 the 
entropy criterion (1.5) and the characteristic criterion [9] of stability are equivalent in the entire hyperbolicity 
domain h > 0). Finally, if Eqs. (2.1), (2.2) are taken as the basis conservation laws and the law of conservation 
of total m o m e n t u m  (2.3) is taken as the closing conservation law, then the entropy function q(h, v) = h �9 v 
for such a "total ly unphysical" system is not convex for all values of the basis variables h and v. Thus.  for 
the well-studied model  of single-layer shallow water the criterion proposed in Sec. 1 uniquely determines the 
physically well-posed complete system (2.1), (2.3), (2.4). 

3. C o m p l e t e  S y s t e m s  of  C o n s e r v a t i o n  Laws  for  T w o - L a y e r  S h a l l o w  W a t e r  E q u a t i o n s .  The  
differential equat ions of two-layer shallow water are [1] 

ht + qz = 0 ,  Ht + Q~ = 0 ;  (3.1) 

vt + [v2/2 + g(h + H)lz = - p z ,  Vt + [V2/2 + g(H + Ah)lz = -Apz,  (3.2) 

where h, q = hv, and v are. the  depth,  discharge rate, and velocity in the upper  layer, H, Q = H V ,  and 
V are the same variables in the lower layer, g is the acceleration of gravity, p is the pressure on the upper  
boundary, and A < 1 is the ratio of the densities of the upper  and lower layers. Equations (3.1) and (3.2) are 
the conservation laws for mass and local momen tum in each layer. 

From sys tem (3.1), (3.2), for pz = 0, we obtain model I with a free surface, and for 

h + H = H*, q + Q = 0, H* = const, (3.3) 

we have model  II with a rigid lid. System (3.1), (3.2) has two other physically meaningful conservation laws: 
for the total momen tum,  

c~, + [QV + ,~qv + g~/2l .  = - A H * p , ,  (3.4) 

where a = Q + Aq, ~ = H 2 + Ah 2 + 2AhH, and for the total energy, 

et + [QV 2 + .Xqv 2 + 2g(Ha  + Ah(Q + q))], = 0, (3.5) 

where 

e = Q V  + Aqv + g d .  

There are no other  independent  conservation laws for model  I. 

(3.6) 
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Similarly to the single layer case (see [13]), we assume that for discontinuous waves, the total momentum 
a is conserved and the total energy e dissipates. Taking account of this, we choose the law of conservation of 
total energy (3.5) as the closing conservation law for both models I and II. 

M o d e l  I I .  It follows from (3.3) that  system (3.1), (3.2) must have only two basis conservation laws. 
one of which is the law of conservation of mass (3.1). To obtain the second law, it is necessary to eliminate the 
pressure p~ from the momentum equations (3.2) and (3.4), and this can be done by three different methods. 

S y s t e m  II .1.  Eliminating p~ from the local momentum equations (3.2), we obtain the law of 
conservation of jump in local momentum at the interface between the layers as the second basis conservation 
law: 

/3t + [(Y 2 - Av2)/2 + #gH]x = 0, (3.7) 

where/3 = V - Av and # = 1 - A (we note that  /3 coincides with the "normalized" velocity introduced in 
[1]). For the complete system thus obtained (which is denoted by II.1), the conservation laws (3.2) are not 
satisfied at a discontinuity because the jump in pressure pz at the discontinuity must be determined from the 
law of conservation of total momentum (3.4). 

Expressing the total energy (3.6), which, in view of (3.3), has the form 

a Q2 e = + ( 3 . s )  

in terms of the basis variables/3 and H, we obtain 

e(/3, H) = gh/32 + g~, (3.9) 
a 

= H 2 H *  where a h + AH, ~ = + Ah 2 + 2AhH, and h = - H. Function (3.9) is convex provided that 

( A 2 - - ) ~ H 2 ) 2 ] N  2 "f tzga3 (3.10) 
1 AHh(H,)2 1~ A(H,)------ ~ .  

+ 

This strengthens the hyperbolicity condition for model II obtained in [1]: 

#ga 3 
9 2 < - -  

A(H*)2" 

In Fig. 1, the hyperbolicity domain (3.11) in the plane of the basis variables /3 and H is shown by 
the curvilinear trapezium ABCD, whose vertices have the coordinates A(-/31, 0), B(/31, 0), C(/32, H*), and 

D(-32,  H*), where/31 = ~g~-~J/k ,  f12 = Xv/-fi-gH *, and A = 0.5. The convexity set of the total energy (3.10) 
is represented by the set OFH*E inscribed in the trapezium, and its boundary points F and E have the 

coordinates F(/33, H0) and E(-/33, H0), where H0 = H*/(1 + v~)  and/33 = ~/#gv/-AH *. One can see in Fig. 1 
that the convexity domain (3.10) is in fairly good agreement with the hyperbolicity domain (3.11): it contains 
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the main central part of the hyperbolicity domain and "cuts off" its corners, which correspond to physically 
less stable flows with a rather large jump of momentum at the interface between the layers in the case where 
the depth of one of them is small. 

Sys tem II .2 .  Assuming that the local momentum of the lower layer is conserved at a discontinuity 
and eliminating pz from Eq. (3.4) and from the second of Eqs. (3.2), we obtain the basis conservation law 

[ v2 g (H 2 + 2Hh + Ah2)] = 0, ~, + -~  ( hH* - 2all)  + -~ 

where ~ = H* V - a  = h/3. This basis conservation law follows from the laws of conservation of total momentum 
(3.4) and local momentum in the lower layer [the second of Eqs. (3.2)] provided that the pressure jump p~ at 
a discontinuity is determined from one of them. 

Writing the total energy (3.8) in the new basis variables ~ and H, we obtain the function e(~, H) = 
H~2/(ha) + g~2, which is a convex function provided that 

~32 < #ga3/r  (3.12) 

where ~ = [r 3 + (2 + A)r 2 + (1 + 2A)r + A]H 2 (r = h /H) .  From Fig. 1, where the convexity domain (3.12) 
is bounded by the curve passing through the points D, O, and C, it follows that this domain is in good 
agreement with the hyperbolicity domain (3.11) only for rather large depths of the lower layer H (more 
accurately, for small r = h/H).  Then, according to the well-posedness criterion of complete systems of 
conservation laws proposed above, system II.1 is more well-posed than system II.2 for depths 0 < H < H2 
with /42 = (3 - x/1 + 8A )H*/(2#), for which the convexity domain (3.12) corresponding to system II.2 is 
strictly inside the convexity domain (3.10) corresponding to system II.1 (see Fig. 1). Conversely, for depths 
H2 < H < H*, for which the convexity domain (3.10) is strictly inside the domain (3.12), system II.2 is more 
well-posed than system II.1. 

Sys tem II .3 .  Assuming that the local momentum of the upper layer is conserved at a discontinuity 
and eliminating pz from Eq- (3.5) and from the first of Eqs. (3.2), we obtain 

[ v2 g - 2 ,sH* - Ah2)] = o, 3t + , ~  (2ah - AHH*) + -~ 

where ~ = a - AH*v = Hi3. The new basis conservation law (3.13) is an integral consequence of the laws of 
conservation of total momentum and local momentum in the upper layer provided that the pressure jump p:c 
at a discontinuity is determined from one of them. 

Expressing the total energy (3.8) in terms of the basis variables ~ and H, we obtain the function 

h -2 
e ( ~ , g )  = -~al3 + 9 %  

which is convex provided that 

~32 < #ga3/~l ,  (3.14) 

where r = [ A2R3 + A(3 + #)R 2 + (3 + 2#)R + (1 + 2#)]h 2 (R = H/h).  From Fig. 1, where the convexity 
domain (3.14) is bounded by the curve passing through the points M, H*, and N [the abscissas of the points 

N and m are +~/#9H*/(1 + 2#)] it follows that the domain (3.14) is in relatively good agreement with 
the hyperbolicity domain only for sufficiently small depths of the lower layer H (more precisely, for small 
R = H/h). A comparison of the convexity domains for systems II.1 and II.3 shows that system II.1 is more 
well-posed than system II.3 for H1 < H < H*, where H1 = R1H*/(1 - R1) and RI is the corresponding root 
of the cubic equation A(2 + #)R 3 + (3 + 2#)R 2 + 3#R - 1 = 0, and, conversely, system II.3 is more well-posed 
than system II.1 for small depths of the lower layer 0 < H < H1. 

Summarizing the results obtained above, we conclude that inside the hyperbolicity domain of system II 
there are three different subdomains and each of them has its own well-posed complete system of conservation 
laws. System II.1 is well-posed in the main central part of the hyperbolicity domain, where H1 < H < H2. 
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System II.2 becomes well-posed for great depths of the lower layer satisfying the inequality H2 < H < H*, 
and, finally, system II.3 is well-posed for small depths of the upper layer satisfying the condition 0 < H < H1. 

In conclusion, we determine how Fig. 1 transforms in the limits A --+ 0 and A + 1. As A --+ 0, the 

abscissas of the points A and B tend to :Fo~, those of M and N tend to :1: 9 ~ / 3 ,  and the abscissas of the 
points E, F ,  D, and C tend to zero. In this case, 

4 x / ~ -  17H, ~ 0.13H* lim H2(A) = H*, lim Hi(A) - 
~-0 ~-0 35 

(as an example, the case of k = 0, 1 is shown in Fig. 2). As A --+ 1, the abscissas of the points A, M, E,  and 
D tend to - ~ ,  those of the points B, N, F,  and C tend to ~/gH*, while the ordinates of the points E 
and F tend to U*/2  and lim Hi(A) = H*/3 and lim H2(A) = 2H*/3 (this limiting case is shown in Fig. 3). 

A---. 1 A---q 
The natural  (at first glance) assumption that the limiting case shown in Fig. 3 must correspond to the 

model III of [1] in the limit 

# ---+ O, n ---+ H ' H ,  /3 ---+ r  t --+ t / r  (3.15) 

turns out to be wrong. An explanation of this is that for model III, the equation of total energy (3.5) takes 
the form 

et + [Hh(h - H)/3a]= = 0, 

where e = Hh[32 and h = 1 - H, and, hence, the total energy e in terms of the basis variables/3 = V - v and 
II (system II .1) , / )  = V and H (system II.2), and ~ = v and H (system II.3) is written as 

H / 3  2 1 -- H -2 
e(~, H) = H(1 - H)/32, e(/), H) - 1 - H '  e(/~, H) - 7/" /3 . (3.16) 

It is easy to see that  all three functions (3.16) are nonconvex in the entire domain of hyperbolicity {0 < H < 
l, 1/31 < g} for model III. 

M o d e l  I. For well-posed formulation of model I in the form of a complete system of conservation 
laws, the two laws of conservation of mass in the layers (3.1) and the law of conservation of total momentum 
conservation (3.4) must be used as the basis laws, and the total energy conservation law (3.5) must be 
employed as the closing conservation law. We first consider the system of basis conservation laws for which 
total momen tum is not conserved. 

S y s t e m  1.0. For system 1.0, we choose the law of conservation of mass (3.1) and the laws of conservation 
of local momenta  in the layers (3.2) as the basis conservation laws. Expressing the total energy (3.6) in terms 
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of the basis variables V. v, H, and h of system 1.0, we obtain the function 

e(V,v ,  H, h) = H V  2 + Ahv ~ + g ( H  2 + .Xh 2 + 2AhH), 

which [similarly to its analog (2.6) for a single-layer fluid] is convex provided the flows in both layers are 
subcritical 

lv l  < J ,l < (3.57) 

and if the following condition [which strengthens (3.17)] is satisfied: 

(Hg - V2)(hg - v 2) > Ag2hH. 

Obviously, these conditions are not compatible with the hyperbolicity condition obta ined  in [1] for model I, 
which imposes a restriction only on the difference of the velocities in the layers, and,  therefore, system 1.0 
cannot be considered well-posed. 

S y s t e m  1.1, 1.2, a n d  1.3. For systems 1.1, 1.2, and 1.3, we use the two laws of conservation of mass 
in layers (3.1) and the law of conservation of total m o m e n t u m  (3.4) as the basis conservation laws. As the 
fourth basis conservation law, for system 1.1 we take (by analogy with system II.2) the  law of conservation of 
the jump of local momentum at the interface between the layers (3.7), for system 1.2 we choose (by analogy 
with system II.1) the law of conservation of local m o m e n t u m  in the lower layer [the second of Eqs. (3.2)], and 
for system 1.3 we take (by analogy with system II.3) the law of conservation of local m o m e n t u m  conservation 
in the upper  layer [the first of Eqs. (3.2)]. 

Expressing the total energy (3.6) in terms of the basis variables a,/3,  H, and h of system 1.1, we obtain 

e(a,/3, H, h) = (ba 2 + 2 # H h a ~  + Hha~2) / (H*)  2 + g~,  

where b = H + Ah, a = AH + h, H* = H + h, and ~ = H 2 + Ah 2 + 2AhH. The  necessary condition for 
convexity of this function eHg > 0, writ ten in the hyperplane H* = const for ~ = 0 and A > 0.5, is 

~2 = (V - Av) 2 < #g(H*)2/[(2A - 1 ) g  + (2 - A)h]. (3.18) 

Writing the total energy (3.6) in terms of the basis variables a, V, H, and h of sys tem [.2 we obtain the 
function 

e(a,  V, H, h) = (a 2 - 2 H a Y  + t IbV2) / (Ah)  + g~, 

for which the necessary convexity condition eVVeHH -- e ~  H > 0 for a = 0 is given by 

V 2 < AgHhb/ (H 2 + Hb + b2). (3.19) 

Writing the total energy (3.6) in terms of the basis variables a, v, H, and h of sys tem 1.3, we obtain the 
function 

e(a,  v, H, h) = (a 2 - 2Ahav + A h b v 2 ) / g  + g~, 

for which the necessary convexity condition evvehh -- e2h > 0 for o~ -=- 0 is given by 

v 2 < gHhb/ (h  2 + hb + b2). (3.20) 

Since inequalities (3.18)-(3.20) are not compatible with the hyperholicity condi t ion for system I (which 
imposes a restriction only on the difference of the velocities in the layers), all three systems 1.1, 1.2, and 
1.3 (as well as system 1.0) are not well-posed. 

S y s t e m  1.4. An analysis of systems 1.1, 1.2, and 1.3 shows that  the necessary condit ion for convexity of 
the corresponding function leads to a restriction on the fourth, additional basis function.  Since this function 
does not coincide with the velocity difference in the layers (which enters in the hyperbolici ty condition for 
system I), the convexity conditions obtained turn out to be incompatible with the  hyperbolicity condition. 
This leads to the assumption that  to obtain a well-posed complete system of conservation laws for model I, 
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it is necessary to supplement  the laws of conservation of mass in the layers (3.1) and total m o m e n t u m  (8.4)] 
by the basis law of conservation of velocity jump at the interface between the layers: 

7~ + [ ( V  2 - v 2 ) / 2  - ~gh]~ = O, 

where '7 = V - v (this system is denoted by 1.4). We note that  the same additional basis conservation law 
appears in the limiting case for the models proposed in [14, 15]. 

Writing the total energy (3.6) in terms of the basis variables a, "7, H,  and h of system 1.4, we obtain 
the function 

e(e~, "7, H, h) = (c~ 2 + l h H 7 2 ) / b  + g~, 

which is convex provided that  

I~[ < f(A, r) = ~rr ( c -  @2 _ 4A2#r3), (3.21) 

where/~ = 1 + Ar, c = 1 + A2r 3 and ~/ = 7/v"-'H = ( V  - v ) / v /H .  Here and r = h / H  are the same variables 
as the ones used in [1] to formulate the hyperbolicity condition for model I. In this case, the function f(A, r) 
has the limits 

~in~/(A, r) = 0, rlirn f(A, r) = v/-fi-g/A. 

[n Fig. 4, the convexity domain (3.2I) is shown for A = 0.2, 0.5, and 0.8 and g = 10. This domain is 
entirely contained in one of the two unconnected subdomains of the hyperbolicity domain for model I, i.e.. 
tile subdomain that  corresponds to small values of the  velocity jump "7, for which the flow is more stable from 
a physical viewpoint. 

Thus,  the convexity condition (3.21) is in good agreement with the hyperbolicity condition for model 
I, and, hence, the complete system of conservation laws is well-posed. 

We note in conclusion that  the complete system for model III, for which unique solvability of the 
problem of decay of an arbitrary discontinuity in the hyperbolicity domain was proved in [16] using the 
characteristic stability condition of [9], is the general limiting case (3.I5) of the well-posed complete systems 
[.4 and II.1. We also note that  the complete systems 1.4 and II.1 can be extended to tile cases of plane potential 
flows and multilayer shallow-water flows. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant No. 96-01- 
01546). 
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